COAL GASIFICATION

To

State of Utah Senate Committee Natural Resources, Agriculture, Environment

Dr. L. Douglas Smoot
BYU Professor Emeritus
Senior Consultant, Combustion Resources, Inc.

General Comments on U.S. Energy Directions

- Complicated Issue
 - U.S. Strategic Dependence
 - Many Energy Sources at Various States of Readiness and Capabilities
 - World Cost Competitiveness
 - U.S. Economy Implications
 - Wind, Solar not Continuous
 - Global Warming Implications
- Strong, Extreme Environmental Lobby
- Partial, Often Biased, Published Information
- Staggering Cost Infrastructure
- Continuing Need for Fossil Fuels (Currently 85%)

Projected Energy Trends to 2030 EIA Annual Energy Outlook 2008

Energy Source	% of Total	
	2006	2030
1. Total Fossil Fuels	85	80
2. Imported Oil/LNG	30	25
3. Renewable (wind, biomass)	7	13
4. Nuclear	8	8
5. Alternative	0	1
U.S. Consumption (10 ¹⁵ BTU)	100	118 (3/4 of 1%)
U.S. CO ₂ Emissions, 10 ⁶ tonnes	6000	6800 (1/2 of 1%)

To Provide 10% of Total U.S. Energy Needs (11.8 Q) by 2030

- Nuclear Build 212 plants 1,000 MW
- Oil Shale Build 4,000 plants 25,000 bbl/day
- Wind Install 26,000 wind turbines, 3 MW (12 hrs/day)
- Biomass Harvest 140,000 acres/day

What is Coal Gasification?

Coal Combustion (Completely Burned) $Coal (CH) + 1.25 O_2 \longrightarrow CO_2 + H_2O$

Coal Gasification (Partially Burned – Fuel-Rich Products)

Coal (CH) + $0.5 O_2$ \rightarrow CO + $\frac{1}{2} H_2$

Coal Gasification FUEL-RICH COMBUSTION.

Coal Gasification Development Has Been On-Going Since the 1940s

• (Lurgi - Germany – World War II – Liquid Fuels)

- South Africa Commercial Liquids
 Production 180,000 bbl/day Decades
- U.S. Clean Coal Technology Program 1986-2005 (5.2 billion)

Gasification - Flexible Feedstocks, Products

Coal Gasification Potential

- Much higher efficiency (IGCC)
- Greatly reduced emissions
- Reduced or eliminated global warming gas (CO₂)
- Flexible Products
 - Power
 - Transportation fuel
 - Syngas, H₂
- Continued use of vast reserves of coal

Comparison of Environmental Factors Pulverized Coal-Fired, NGCC and IGCC Plants

Worldwide Gasification Capacity

- > 140 gasification plants.
- > 420 gasifiers.
- Nineteen plants United States.
- 70 % growth 2015 (80% in Asia)

Uses:

- Chemical, Fertilizer, Coal-to-liquid
- Oil sand
- Hydrogen and power, SNG
- Refining

U.S. Coal Gasification Expansion

- Currently, 19 plants, 1977-2002, one power plant.
- Slowed by Environmental Concerns CO₂
- 15 Plants Cancelled since 2002 (DOE, Dec 2008)
- 41 Proposed Plants for service (2008 2014)
- Coal Gasification A key in U.S. Department of Energy Plan - 45 to 50 percent electrical efficiency - \$1,600 per kilowatt – Environmental and efficiency benefits

Efficiency Timeline

Capital Cost (2007\$/kW) Timeline

COE Timeline

CO₂ Capture/Disposal (CCS)

- All Fossil Fuels Produce CO₂
- Natural gas-CH₄; Gasoline-CH₂; Coal-CH
- With CO₂ Capture Nearly Commercial Technology - Reduce CO₂ > 90%
- Goal 99% storage permanence (DOE, 2009)
- CO₂ for:
 - Secondary Oil Recovery Commercial
 - Sequestration In development
 - Algae Growth Concentual

CO₂ Capture/Disposal (CCS) Continued...

- CO₂ Sequestration Major U.S./ DOE Effort
 - IEA Worlds Largest Program
 - Seven DOE Regional Partnerships
 - Three Regions 315 M
- Accelerated Investment
 - 2008 Energy bill \$1.5 B, 65-75 % CO₂ reduction 10 years
 - 2009 Stimulus \$2.4 B, 90 % CO₂ capture 10 years
 - Geologic CO₂ Sequestration Training and Research FOA \$20 million
- Projected Commercial one to two decades (DOE; WBC, 2006)
 - By 2020 Commercial Deployment Technologies 90% CO₂ capture

The Green Coal Path to Near-Zero Emissions with Coal

New Supercritical Plants & CCS Demonstration Essential

Clean Coal: America's Energy Future, Dec 2008

Summary

- Use of Coal Essential Key Part of DOE Plan
- Coal Gasification and Coal Combustion Viable
- Coal Gasification and CO₂ Capture
 Commercial
- U.S. Major Effort on CO₂ Storage from Coal
- Extreme Environmental Lobby Curtailing Expansion of Coal Use and Gasification

Thanks for the opportunity

To discuss

Coal Gasification Technology

State of Utah Senate Committee
Natural Resources, Agriculture, Environment

L. Douglas Smoot
June 17, 2009